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5) Complex Integration

5.1 Introduction

Let w = f(z) be a continuous function of the complex variable z and C be any

continuous curve connecting the two points A and B of the domain. Divide C

into n parts by the points z1, 2o, 23 - - - 2,1 Where A & B correspond to zg & zy,.
Let Az = 2z — zx_1 and let g, be any arbitrary point in the arc Azy.

n

Then, consider the sum S, = > f(ax)Az
k=1

0

If the limits S, exists as n — oo and each z;, — 0 and if this limit is inde-
pendent of the mode of subdivision of C' and the choice of «ay, then it is defined
as the line integral of f(z) from A to B along C. it is denoted by

/f(z)dz or / f(z)dz
C AB

it w= f(2) = u(e,y) + io(e,y)
then /f(z)dz = / (u+iv)(dx + idy)
C

C
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= / (udx — vdy) + i / (vdx + udy)
c c
H Note:

1. If the parametric equation of C'be x = ¢1(t),y = ¢2(t) then w = f(2) &
dz = dx + idy can be expressed in terms of the parameter ¢.

b
dz

ie. / F(2)dz = / Fle(e) St
C t

=a
2. |Az| denotes the length of the chord joining Zx_; & Zi. If the sum
n

> |Azg| tends to a limit as n — oo in such a way that each Az — 0,
k=1
then the limit is called the length of the curve C.

3. If the starting point A of the arc and the end point B of the arc coincide then
the complex line integral is called closed contour integral & is denoted by

§ f(2)dz.
C

It does not indicate the direction along the curve but by convention we take anti-
clock wise direction to be positive unless stated otherwise.

Regions
A region is a connected set of points. It may consist of interior points or interior

and boundary points. An open region consists only the interior points, but a closed
region consists all its boundary points and interior points.

A region R is said to be connected region if any two points of it are connected
by curves, lying entirely with in the region.

A region R is said to be simply connected if any closed curve which lies in R
can be shrunk to a point without passing out of the region.

A region which is not simply connected is called multiply - connected.

Simply connected Multiply connected Multiply connected
region region region converted to a

simple connected region

A multiply connected region can be converted to a simply connected region
by introducing one or more cross cuts as shown in the above figure.
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Properties
1. IfC =Cy + Cathen [ f(2)dz = [ f(z)dz+ [ f(2)d=
C Cy Ca

2. If a be a complex constant, then [ af(z)dz = a [ f(z)d=z
C C

3. [laf(z) +9(2)ldz=a [ f(z)dz + [ g(2)dz
C C C

4. If Cs represents the contour (', transferred in the reverse direction, then

[ Fe)dz = — [ f()dz
Co 1

5. If £ be the length of the curve C' and if |f(z)| < M for all z on C, then
zl < MP.

5.2 Cauchy’s Integral Theorem (Cauchy’s Fundamen-
tal Theorem)

Statement : If f(z) is analytic and f/(z) is continuous at every point inside and
on a simple closed curve C' then

[ ez =

c

Proof:
Let f(z) = u(z,y) + iv(z,y)

/f

S o\

(u +iv)(dx + idy)

(udz — vdy) + i / udy + vdx
c

Oou Ou 0 0
Since f’(z) is continuous, the four partial derivatives —u, —u, Y and 27 are

Ox’ 0y’ Ox oy
also continuous on C' and in the region R enclosed by C, then applying Green’s

theorem in a plane, which states that

/Pda:+Qdy—//<8—§—a—P> dzdy

Since f(z) is analytic, the Cauchy - Riemann equations hold at every point of R.
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. ou  Ov ou —O0v
ie., — =—, and — =

ox Oy’ oy Ox

[ ste= [ (52 Gy Jawanes [ (52 5 Jaea
//(@__>dxdy+z//<@__>dxdy

=0+4+1:0=0.
M Note :

1. In the above form of Cauchy theorem we had the assumption that the func-
tion f’(z) is continuous. It was the famous mathematician Goursat who
first established that the above condition of continuity of f’(z) is unneces-
sary and can be removed from the hypothesis.

Hence if f(z) is analytic at all points on and inside a simple closed curve
C, then [ f(z)dz = 0.
C
2. Extension of Cauchy’s integral theorem

If f(z) is analytic within and on a multiply connected region bounded by
a simple closed curve C' and non-intersecting close curves C'1,Cy, -+ Cy,

e 2z = / F(2)dz + / F)dz 4 -+ / ()dz
4 Co Cn

where all the integrals are taken in the same sense.

5.3 Cauchy’s Integral Formula (Cauchy’s Fundamen-
tal Formula)

Statement: If f(z) is an analytic function within and on a closed curve C of a
simply connected region R and if ‘a’ is any point within C' then

f) .

27i z—a
C

fla) =
Proof :
J)

z—a
and on C, except at the point z = a. Now draw a small circle C, with centre at
z = a and radius p, lying completely inside C'.

Since f(z) is analytic within and on C, therefore is also analytic within
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fz)

zZ—a
connected region bounded by C' and C'i. Applying
Cauchy’s extended theorem, we have

Mdz = /(z) dz

z—Qa - z—Qa
c Cq

The function is analytic in the multiply

on Cp,|z—a|=p hence z—a=pe?

or z:peie—Fa

dz = ipe?dd
2 i0
Hence / /(z) dz = /(z) dz :/ﬂL.ge)ipede
Z—a zZ—a per
C Cq 0
2

= / f(a+ pe®)dd  taking limitas p — 0

i / F(a)dd

0
i f{@)O" = 2mif(a)
flo) = — [ L24,

211 zZ—a
C

Cauchy’s Integral Formula for Derivatives of an Analytic Func-
tion
(AU 2009)
By Cauchy’s integral formula, we have

.wzﬁ/f%
C

Differentiating partially both sides with respect to a within the integral sign,

we get ~
Fo= L [ LD,

_27TZ (z—a)Q

Proceeding in a similar manner, we get

pa- 2 [ L,

_27T’L (z—a)3
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and in general '
n!

n f(2)
C
Ml Note :
Cauchy’s integral formula can be extended to multiply connected region.
If f(z) is analytic in the region bounded by closed contour
C1,C%,C5,Cy -+ - and ‘a’ is point in the region then

1 f(z) 1 f(z) 1 f(z)
S dz — — dz — — d
f(a) 27i / (z—a) “ 7 omi (z—a) T omi (z—a) :
Cq Cs Cs
Example 5.1
1+i
Evaluate [ (z? — iy) dz along the path y = x. (AU 2009)
0
Solution:

Alongy =z dy = dx x varies from O to 1

1+i 1+
/ (:132 —iy) dz = / (1’2 — iy) (dz + idy)
0 0

= /1 (2? — iz) (dx — idx)
0

Note:

3 2 1 z=x+ 1y
= (1+1) [__Z_] dz = dx + idy

i’ »2 0 puty =x
—(14_2‘)(5_%) & dy = dx
_5_1
66

Example 5.2

Evaluate / (2% — iy*)dz along
C
(i) the parabola y = 222 from (1,2) to (2,8)
(ii) the straight line from (1,1) to (2, 8)
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Solution:
(i) Given y = 222
Sody =4x dx

(a:2 — iy2)(d:l: + idy)

/(a:2 —iy})dz = /
C C
/

(2% — idz™) (dx + idadz)

— r—x

Y2 — Y1 T2 — 21

-1 -1
Y _7 =t or y—1=17t

8—1 2-1

r—1=t
dy="7dt and dr=dt and 0<t<1

/(q;? —iy?)dz = / [(t +1)% +4(7t + 1)?] [dt + iTdd]
C

[(t+ 1) +4(7t + 1)%] [1 + 7i] dt

[(L+8)% = 7(Tt+ 1)) +4 [(Tt +1)* +i7(t + 1)]dt

Q\H Q\ Q

(14+t)* (7t+1)° '

3 3

1 3 3
. 1(Tt+1) +7(t+1)
7 3 3

1
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Example 5.3

Evaluate / (22 + 32)dz along
c

(i) the straight line from (2, 0) to (0,2)
(ii) the straight lines (2, 0) to (2, 2) and then from (2, 2) to (0, 2).

Solution:
The equation to the straight line joining (2, 0) to (0, 2)
ist+y=2o0ory=2—zxanddy = —dzx

/ (2% + 32)dz
0.2)

C
_ / [(x + iy)® + 3(a + iy))(dz + idy)
C

0|

(22 — 92 + 2izy + 3z + 3iy)(dx + idy)

/
_ / 02 — (2= )% + 2i0(2 — 2) + 3z + 3i(2 — 2)](1 — i)dz
C
0
/

(ii) / (22 + 32)dz = / (22 + 32)dz

C AB

z=2 c y=2
= ————8(2
dz=0 (0.2} B(2,2)
=2
+ / (22 + 32)dz i
BC (2,0)
y=2 0 A
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[(z +i2)* + 3(x + 2)]dx

&\o

2
_ / [(2 4+ iy)? + 3(2 + iy))idy +
=0 r
2

2
(2 +iy)® L3024 iy)? (z 4 2i)° L3+ i2)?

59

3 2 3 2
0 0
-8 8.
(?‘@‘5“6
__ M 8
-3 3
Example 5.4

141
Evaluate / (2% 4 i) dz along the parabola

0
() y = 22 and (ii) z = v

Solution:
(i) Giveny = z? z=x+ 1y
when z=0; =0
dy = 2w dv z2=1+1; z=1
144
/ (2% +iy)dz = [ (2% +ix?)(dx + i2xdx)

1
[
1
/x2(1+i)(1+i2x)da:
0
[2%(1 = 2z) + i2?(1 + 22)] dz

[(:C2 —223) 4+ i(2® + 2:53)} dz

0
3 2zt a3 2t !
:KTT)“(TT)L

1

E
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(ii) Given z = y? z=x+1iy

when z=0; =0

dv =2y dy z=144+; =1
1414 1
/ (2” +iy)dz = / (y* + iy) (2ydy + idy)
0 0
1
— [+ i)+ iy
0
1
=/[(2y5—y)+i(y4+2y2)}dy
0
24/0 2 5 1
(R (Y
6 2 53 /],
117 (L2
== —_ — — 1| = —
3 2 53
T 6 15
Example 5.5

dz . :
Evaluate / where C is the circle |z — a| = .
z—a
C
Solution:

GivenC'is |z —a| =7

0

z=a+ré and dz = re'i do

Example 5.6

Evaluate [ secz dz, where c is the unit circle |z| = 1.
Cc

(AU 2009)
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Solution:
1
secz dz = dz
CcoS z
C C
cosz =10

s

= z:(2n+1)2, n=20,1,2...
3m

L) —7 e e
2
Since the singular points are lies outside the circle |z| = 1.

d
/ i :/seczdz:O
CcoS z

Cc c

Singular points are z =

bo | 3

Example 5.7

Evaluate / (z —a)"dz,m # —1,C is the circle |z — a| = 7.
0

Solution:
GivenC'is |z —a| =7

z=a+re? dz=re?idd

2

/(z —a)"dz = /rmeimarewidQ
C 0
27
b e(m+1)i0
(m+1)i o
T'erl )
= T |:€27m(m+1) — 1:| =0 Since m # —1
m

Example 5.8

2 .
Evaluate / 2t dz, where C'is the semicircle z = 267‘0, 0<o<m.
z

C
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Solution:
Given 2z = 2¢% codz = 2ie?do
Z+2 [ (26 +2) i0 -
/ > dZ = /T(2€ 2 d9)
C
/ (1+ 619
0
-2 (0+ e—)]
7
[“ -
T —
Example 5.9

Evaluate / (22 + 3z)dz along the circle |z| = 2 from (2,0) to (0, 2).
c

Solution:

Given |z| = 2,ie. 2 =2¢ and 0<60<3Z

/(22 + 32)dz = / (22 + 32)dz

C |z|=2

_ / [(2ei9)2+3(26i9)] 2 idf
0

3260 2107 o
~ 8t 1282
37 2i |,

_ g(eﬁ% 1) 4 6(e7 — 1)

- 2(_1' —1) +6(-2)
_ -4 8

3 3
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Example 5.10
241

Evaluate / 22dz along
0

(i) the line x = 2y
(i1) the real axis upto to 2 and then to 2 + <.

Solution:
(i) Givenz = 2y
dx = 2dy

241 241

/szz = / (z + iy)*(dz + idy)

0

(2% — % +i2zy) (dx + idy)

|
o\_l\f o

— L O O O

[4y* — y* + i2(2y)y] [2dy + idy]

[3y2 +idy?] [2 + i] dy

(6y2 — 4y2) +1 (3y2 + 8y2) dy

2% +i11y?] dy

2(5) (5],

n 11
/Z_
3

— O

[SSRN )

2+1

(ii) Now/szz: /szz+/z2dz

0 OA AB

5.13
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OA AB
y=0 =2
= / (z + iy)*(dz + idy)+ / (z + iy)*(dx + idy)
OA AB
y= =2
dy=0 *dx=0

1
= [ 2%dz+ / (2 + iy)%idy
=0 y=0
x?’] 2 [ y3 1
== +i 4y——+2iy2] (
5, i), A
8 . 1 )
:§+Z<4§+2Z> B
8 112 _
-2 _9 - x=2y =
3“7 3 ?
211
- § + ?’L 0 y=0 A- » x
Example 5.11

Find the value of [(2% + 2z + 1)dz where C'is the circle [z| = 1. (AU 2009)
c

Solution:
By Cauchy’s Integral theorem

flz) =22 42241 /f(z)dz:()

Example 5.12
) , . z+4 )
Using Cauchy’s integral formula, find the value of 21245 where C' is
C

the circle |z + 1 —i| = 2. (AU 2008, 2012)
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Solution:

Given C : |z 41 —1i| = 2, this represents a circle with center at —1 + ¢ and radius
2 units.

/__iii_d%_/‘ z+4 dz
2242245 ) (z+1+2)(2+1—29)
C C

The point z = —1 + 2¢ lies inside the circle C and the point
z = —1 — 24 lies outside the circle C.

Hence by Cauchy’s integral formula, we have

1 f(2) 1 s
fa) 27i / —a" " 2mi [z — (=1 + 2i)] :
ki 1 w00 @ f(z) = 24
ng a=— i, an zZ) =g——————
s ’ c+1+2
/_f(z) dz =27if(a)
z—a
c
z+4
dz = 2mi
/kz+1+%ﬂz+l—%)z mif(a)
(&
o0 [ a+4
=2m | ————
la+1+2:
[ —14+2i+4
= 2mi . -
1 +204+1+2¢
(20 +3
= 271
ST ]
3+ 2
= s
2
Example 5.13
vy . 322+ 2 .
State Cauchy’s integral formula. Evaluate [ 5 dz where C' is the
c -
circle |z — 1| = 1 using the formula. (AU 2009)

Solution:

Cauchy’s integral formula
If f(2) is analytic within and on a simple closed curve C' and z is any point

1
inside C, then f(zp) = 5 S dz the integration round C being taken in
T o 2 — 2

the positive sense.
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Here f(z) =322 +2

N 1 1 A n B 1 1 1

ow — = = — —
22-1 (z+1)(z-1) 2z-1 =z+ 2\z—-1 =z+1

322+ 2 322+ 2 1 1 )
A N P i A P - d
/22—1 : /(z+1)(z—1) : 2/<z—1 z+1>(3z +2) da
C C

C
1 2 2
I:—/ 3z +z_3z +z "
2 z—1 z+1
C

Clearly z = 1 lies inside the circle and z = —1 lies outsides the circle |z| = 1.
322+ 2 Iytic inside |2 = 1
——— is analytic inside |z| = 1.
22+1 Y y
By Cauchy’s integral theorem, we get &
z=|—1 ‘; X
322+ 2
/ o dz=0
|z|=1
1 2
;o1 / 329+ 2 I
2 z—1
|z—1|=1
1 . 2
=5 2mif(1), where f(z)=32"+z2
=mi(3+4+1) = 4mi

Example 5.14

Using Cauchy’s integral formula, evaluate /
1 C
circle |z — 2| = 7 (AU 2009)

z .
mdz, where C is the

Solution:

. L. , . I
GivenC': |z — 2| = > this represents a circle with centre at 2 and radius — unit.

| e

C
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The point z = 1 lines outside the circle C' and the point z = 2 lies inside the circle
C. Hence, by Cauchy’s integral formula, we have

fM(a) = 2n_7T'Z/ (2 f(;;)n-l—l dz

C
take n = 1 or f'(a :ﬁ/ Iz Qt:%/(z%
C C
here a = 2 and f(z) = z—l
/(zf_(Z;PdZ—me()
C
/(2_1)(2_2) dz = 2mif'(a)
c

Example 5.15
241 . . . .
Evaluate ] dz where C'is a circle of unit radius and centre at
22 _
C
z=1 (i) z = 1. (AU 2008)
Solution:
(i) Given C' is a circle with centre at z = 1 and radius 1 i.e.
lz—1]=1
1 2411
/ 2 + d — / Ldz
2 (z+1)(z—1)
C C
Hence the point z = 1 lies inside C' and the point z = —1 lies outside C'.

Hence by Cauchy’s integral formula.

2241
f(a)zi. Malz:i,/z—“clz:

2T zZ—a 21 z—1
C C
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2241
z+1

z2+1
d—2
/22_1 /Z+1 2 = 27if(a)
C
2
:27ri<a+1>
a+1

1
P (i)
+1

= 2w

Here o = 1 and f(z) =

—_

(ii) Given C'is a circle with centre at z = ¢ and radius 1 i.e. |z — 7| = 1.

z¢+1 2241
dz = | ————d
[ 5t~ [ e e
c

C

Here both the points z = 1 and z = —1 lie outside C'.

Hence by Cauchy’s theorem

2241
/22_1dz:0

C
Example 5.16
622
Using Cauchy’s integral formula evaluate / Wdz where C' is the circle
z
C

|z| = 2. (AU 2009)
Solution:

Given C' : |z| = 2, which represents a circle with centre at zero and radius 2.
Hence z = —1 is a point inside C.
Here a = —1 and f(z) = e%*
Hence by Cauchy’s integral formula, where we have
n!
27TZ / n+1
c

Taken = 3
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1@ = g [

27

i d° .
~ 3 d3 [e*]—_s

= T[]
8Tl _o

3

z=—1

5.19

Example 5.17

1 5 —
Prove that — / (Z—stz = 3z, If C' is a closed curves described in the

2mi z—2p)

positive sense and zg is inside C'. What will be its value when 2z lies outside C' ?

Solution:
By Cauchy’s integral formula

f(")(a) — 2”_7!2 / %dz
C

take n = 2,a = zp and f(z) = 23 — 2.

f”(a)—Q—!/ 23— 2 &

2mi | (2 — 20)3

[ B 23—z
2mi ) (22— 20)3

_1d?

1
3 — —
5 d22 |:Z B Z] Z=Zz0 5(62)7;:,20 - 320

If g lies outside C, then by Cauchy’s theorem

ZS—Z
/<z—zo>3dz‘°
C

Example 5.18

d
Evaluate [ :
o 22—

3 where c is the circle |z| = 1. (AU 2010)
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Solution:

The Cauchy’s integral formula is

[ L b o) om M)
Z — 20
c
dz 1/2
Gi = d 2
wven [ 5 /2_3/2 : @)
Comparing equation (2) with the L.H.S of equation (1) we get
3
f(z)=1 =7
3 . . .
Here zg = 5= lies outside the circle |z| =1.
1
" 5 3 is analytic inside the circle C
- —
.". By Cauchy’s integral theorem
dz
=0
/ 2z —3
||
Example 5.19
322+ 7z +1 1
What is the value of the integral [ <ﬂ> dz where C'is |z| = =?
b, z+1 2
(AU 2010)
Solution:
Sincez—i—l:lO = z=—1
Here 1 > —. .. The point z = —1 is lies outside of the circle.
2 1
Hence [ <M> ~dz=0.
C z+ 1
Example 5.20
z+4 . .
Evaluate ¢ dz where C'is the circle |z| = 1. (AU 2009)

o 22+2z2+5
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Solution:

|z| = 1 is the circle whose center is (0, 0) and radius is 1.

z+4 _ z+4
2242245 (2+1+2i)(2+1—2i0)

The points —1 — 2¢ and —1 + 2i are lies outside of the circle |z| = 1.
By Cauchy’s integral formula,

z+4 .
[ g =20
C
=0
Example 5.21
Evaluate / dz where C is |z| =4 (AU 2009)
(z—=1)(z—2)(z —3)° N
c

Solution:

Given C' : |z| = 4 which represents a circle with centre at 0 and radius 4 units.

Here z = 1,z = 2 and z = 3 all the three points lies inside C'.

1 12 -1 12
(z—1)(z—2)(z—3) _z—1+z—2+z—3

(by splitting into partial fractions)

using Cauchy’s integral formula, we have

/(z—l)(zd—ZQ)(z—3) :%/zd—zl_/zd—z2+%/zd—z3

C C C C
1 1
= §2m'f(1) —2mif(2) + 3 2mif(3)
=i — 27 +
=0

Example 5.22

If f(a) = / ?’sz_#dz where C'is |2| = V2 find £(3), (1 — i), f'(1 — i)
and f"(1 —Cz)
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Solution:
Given C : |z| = v/2, which represents a circle with centre at 0 and radius 2 units.

3224+ 72+1
() £(3) = / Tl
C

The point z = 3 lies outside C

.. by Cauchy’s theorem

3224+ 72 +1
C

(i) By Cauchy’s integral formula, we have,

_ 1 f(2)
f(a)_%/(z_a)dz
C

, 322+ 72 +1
f(l—z):/mdz

= 27if(a) herea=1-1i, f(2)=322+72z+1
= 2mi(3a® + Ta + 1)
=2mi(3(1 —i)2 +7(1 —i) + 1) = 27(13 — 14i)

3224+ 7241
(iii) Given f(a) = / Z+72+dz differentiating with respect to a, we have
2=
C
322+ 72 +1
/
= | ———d
Flo) = [ F e
z =1 —ilies inside C' ozl =v2 <2

32247241
"1 —3) = s -
f=i) /[z—u—m?
C
d
= —27ri%[3z2 + 724121

= —27Ti[62 + 7]z:+17i
= —27i(13 — 61)
= —27(6 + 131)
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(iv) Now Differentiating f’(a) again with respect to a
3224+ T2+ 1
!
— 22T
o) = [ EE
3224+ Tz+1
" 1 _ ) = —d
ra-a= [ G
C
=2mi f"[322 + T2+ 1],214

= 2mi(6)
= 12m

Example 5.23

322+ 7z +1
Evaluate f ﬂ

1
dz where C'is |z| = =. (AU 2013)
b z+1 2

Solution:

= 1
zr1=0 , which lies outside of |z| = .
z=—1 2

32247241
Hence by Cauchy’s theorem | Mdz =0
b z+1

Example 5.24

2

2
Evaluate / sihmz” + oA dz, where C is the circle |z| = 3
(z—1)(z—2)

(AU 2007, 2009, 2011)
Solution:
Given C : |z| = 3, which represents a circle with centre at 0 and radius 3 units.
Here the points z = 1 and z = 2 both the inside C.
Hence a = 1 and a = 2, f(z) = sin7z? + cos w22

By Cauchy’s integral formula, we have

z

/ sin w22 + cos w22 / sin 22 + cos w22 / sin w22 + cos w22
z = dz
(z—1)(z —2) (z—1) (z —2)

(by partial fractions)
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= —2mi f(1) + 2mi f(2)
= —2mi[sin T + cos 7] + 27i[sin 47 + cos 4]

= —2mi(—1) + 2mi(1)

=4
Example 5.25
eZ
Using Cauchy’s integral formula evaluate —————————dz where C is
g y's iieg / 12)(z + 1)
C
|z| =3 (AU 2008)
Solution:

Given |z| = 3, which represents a circle with centre at 0 and radius 3 units. Hence
the points z = —1 and z = —2 both lie inside the circle C'

Let f(2) = €*.
e? e” e? e?
— dz= dz — | ——d —d
/<z+2><z+1>2 i /z+2 ? /z+1 ”/<z+1>2 ?
C C C C

(by partial fractions)

(1)

2m
1
= 2mile™?] — 2mife™ Y] + 2ie " x
2

=2mif(—=2) —2mif(—1)+

= 2mie”

Example 5.26
Show that when f(z) is analytic within and on a simple closed curve C and z is
/
not on C' then Mal,z = / &dz
zZ — 2 (z — 20)?

Solution:
(1) Suppose zq is an exterior point i.e. zq lies outside C, then both

f(z) f'(2)
(z = 20)? md - 20
by Cauchy’s theorem
O O
dz = / : ~0

z — 29 2 — 2p)?

are analytic inside and on C
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(i1) Suppose the point z = zq lies within C' then by Cauchy’s integral for-

Mdz =2mif'(20)
Z— 20

mula,

C

and by higher derivative formula

/%drg = 2mif'(20)

C

Hence /
C

f'(2)

(z — 20)

[ Ie)
dz_c/(Z—ZO)Qd

Example 5.27

sin 2z

E 1 { TV E!
Vauae/(z_ﬂz/4)4

c
Solution:

where C'is |z| = 1.

(AU 2008)

Given |z| = 1, which represents a circle with centre at 0 and radius 1.

Hence z = WZZ lies inside the circle C' and f(z) = sin 2z.

n!

By Cauchy’s integral formula, we have f”(a) = 57 / (Zic(%dz
take n = 3 2) o ‘
z)  2mi,
/(z—a)4 N Tf (a)
C
sin2z  wi d®
G mijay 3 753 510 22]o=ri/4
C
= %[—8 08 22],—ri/a
— cosh(m/2)
Example 5.28

Using Cauchy’s integral formula evaluate /

|z —2—1i| =2

z+1

————dz where C is the circle
23 — 222

C
(AU 2010)
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Solution:

Given C' : |z — 2 — i| = 2, which represents a circle with centre at z = 2 + ¢ and
radius 2.

Hence z = 2 lies inside the circle C and z = 0 lies outside the circle C.

z+1

or /mdz = 27if(a)
C

Example 5.29
Evaluate / mdz, where cis the circle |z—2| = 3/2, using Cauchy’s
c
integral formula. (AU 2008)
Solution:
Given |z — 2| = 3/2, which represents a circle with centre at z = 2 and radius
3/2. Hence z = 1 lies inside the circle C and z = —2 lies outside the circle C'
Here 1 and f(z2) :
a = )= —
(z +2)?

By Cauchy’s integral formula, we have
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Example 5.30

2 +z41 . . .
Evaluate / mdz where C is the ellipse 422 + 9y* + 1, using Cauchy’s
22 —Tz

C
integral formula.

Solution:
22 y?
Given 422 + 9y? + 1 or 1/2)2 + WEE = 1 is the standard ellipse.
2B +z+1 2tz 41
————dz = | ———F—=dz
22—T2+46 (z=6)(z—1)
C C
B4+z+1
Here both the points z = 6 and z = 1 lies outside the ellipse hence ——————
22 —-T246
is analytic within and on C.
3
22+ z+1
H by Cauchy’s th ————dz=.0
ence by Cauchy’s eorc:m/ZQ_?Z_l_6 z
C
Exercise 5(a)
= Part - A
1. State Cauchy’s integral theorem.
2. State Cauchy’s integral formula. (AU 2007)

3. State Cauchy’s extended integral theorem for a multiply connected region.
4. State Cauchy’s extended integral formula for a multiply connected region.
5. State Cauchy’s integral formula for the n'" derivative of f(z).

6. Define simply and multiply connected regions. (AU 2008)
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3

10.

11.

12.

13.

14.

15.

16.

17.

Engineering Mathematics - I1

. Evaluate / 2%dz, where C is the curve y = 22 passing through the points

C
(1,1) to (2, 4).

. Evaluate / 22dz, where C is straight line passing through the points (1,1)
C
& (2,4).
. Evaluate / log zdz, where C'is the unit circle |z| = 1.
c
Evaluate / |z| dz, where C' is a semi-circle of the unit circle |z| = 1 from

Q

z=—1t02z =1.

1

Evaluate [ —dz where C is the semi circular arc |z| = 1 above the real

Q\

axis.
Evaluate / 2% —4?)dz along the straight line from (0,0) to (0,1) and

from (0, 1) to (2, 1)

Show that /log zdz = 4mi, where C is the circle |z| = 2.
C

7

1 5
Show that [ (2* 4 iy)dz = ~& + i— along the parabola y = 2.

6

O\:

1+i
1 13
Show that / (2% 4 iy)dz = —— + i— along the parabola z = 3>

6 15
0

Show that /z2dt = 4mi, where C is the circle [z — 1| =1
C

14i
Evaluate / |2|*dz along the line 3y = .
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d
18. Evaluate / % Where C'is |z| = 3.
22(22 + 4)
C
dz ) .
19. Evaluate P where C'is the circle |z — 2| = 5. (AU 2009)
P
C

z
20. Evaluate / € dz where C is the unit circle |z| =1
z
C

= Part - B

21. Evaluate / (x + 2y)dz + (y — 2x)dy where C' is the ellipse defined by

C
x =4cosf,y = 3sinf and C is described in the anti-clock wise direction.

(2,5)
22. Evaluate / (3z + y)dz + (2y — x)dy along

(0,1)

(i) The curve y = 22 + 1
(ii) The straight line joining (0, 1) and (2, 5)
(iii) The straight line from (0, 1) to (2, 1) and then from (2, 1) to (2, 5).
(1+4)
23. Evaluate / (x —y+ iz?) dz along the line from z = 0to z = 1 +
(0)

24. Evaluate /(22 + 1)2dz along the arc of the cycloid x = a(f — sinf)

C
y = 6(1 — cos ) from the point § = 0to § = 27

d
25. Evaluate / Tz where C' is the boundary of the square bounded by

C
the real and imaginary axes and the line x = 1 and y = 1.

26. Evaluate the following using Cauchy’s integral formula

3
1
(a) /'274_, where C'is |z| =1
ze — iz
C
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()/ dzwhereCls\z—Q—z\_Q
© [ 25 o where Clis |z — 2~ i| =2
c 35,7 where C'is |2 il =

—1
(d) / z3 4dz, where C is the ellipse 22 + 4y = 4

t 2
(e) / (an—z/)de, —2 < a,< 2, where C'is the boundary of the square
z—a

c
where sides lie along x = +2 and y = 42 described in the positive
sense.

®) / dz where z = a lies inside the closed curve C.

(AU 2007)

@ 1 fla) = [

C
fQ), f(i), f'(=1) and f"(—i)

(h) /Smﬂz +cosme” dz, where C' = |z| = 3.
z+1)(2+2)

dz, where C'is |z| = 2, find the values of

inh 2
1) / n 7 Zdz, where (' is the boundary of the square
z
C
r=42andy = £2

G) /%, where C'is |z]| = 2 (AU 2008)

(k)

is|z—1 =4
sin 3z .

4)) /—dz, where C'is |z| =5
z4+7/2

(m) / dz where C'is |z| = 1
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d
(n) / sint’ Z/6Z3, where C'is |z| = 1

(0) / ﬁ, where C is the circle |z — i| = 2 (AU 2009)

4-3
27. Show that / ( : dz = 2mi, where C is the circle |z| = 3/2.

2(z—=1)(z—2)
C

(AU 2010)
1 i _ tsint
28. Prove that — / ¢ dz = 220 if ¢ > 0 and is the circle |z| = 3.
21 ) (22 +1)2 2
C
29. If C is the circle |z| = 3 described in the positive sense and if
222 — 2z —2
g(z0) = /Ldz, |z| # 3, show that g(2) = 8mi. What is the
Z— 20

c
value of g(zo) when |zp| > 3?

32246z +1
30. If f(a) = / ﬂdz, where C is the circle 22 + y? = 4, find the
z—a
C
value of f(3), f(1 —1)and f”(3).

31. If C is a closed curve described in the positive sense and

d(20) = /z R dz show that ¢(29) = 12miz2, when z is inside C
Z —_

c
and ¢(zp) = 0 when zg lies outside C.

5.4 Taylor and Laurent’s Expansions

Let us consider the infinite series f1(z) + f2(2) + f3(z) + - - -, whose terms are
functions of the complex variable z.

Let S,,(z) denote the sum of the first n terms of the series. If S, (z) tends to a
limit S(z) as n — oo for all z in a region R, then the series as said to converge or
to be convergent in the region R and to have a sum S(z).

ie, lim S(z)—Sp(z) =0
n—oo
A series which is not convergent is said to diverge or to be divergent.

Every analytic function has a power series representation called the Taylor se-

ries. Analytic function can also be represented by another type of series called
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M Note :

1.

A+z)t=1—-z+a?—23+ -if |z| < 1.
A—a)t=14+z+2®+23+ -if |z] < 1.
(14+2)2=1-2x+32% — 423 +---if 2| < L.
(1—2)"2=1+2x+32% + 423 +---if 2] < 1.
(1+2)7'=1—2+22— 2%+ ..., Region of validity is |z| < 1.

-1 . . (3
(1+1) " =1-1+ z%-u,Regmnofvahdltyls Ll <1=12|>1
If we have only positive powers of (z-a) then the series is Taylor’s series
about the point z = a, if we have positive and negative powers of (z — a),
then the series is a Laurent’s series.

[o¢]
The part > a,(z — a)”, consisting of positive integral powers of (z —a) is

n=0
* b
called the analytic part of the Laurent’s series, and ﬁ, consisting
n=1\%2 —0a
of negative integral powers of (z — a) is called the principal part of the
Laurent’s series.

Example 5.31
Expand f(z) = sin z in a Taylor series about z = 7 /4 and determine the region
of convergence of this series. (AU 2006, 2009)
Solution:
. . 1
Given f(z) =sinz S f(m/4) = 7
f'(z) = cosz oo fi(m/4) = !

S

f'(z)=—sinz . f'(n/4) =—

f"(z)=—=cosz . fw/4)=—

SRR



Complex Integration  5.37

The Taylor’s series of f(z) = sinz at z = 7/4, is given by

b (1 (1)
1

The region of convergence is |z — 7/4| < oo.

Example 5.32

Expand cos z into a Taylor’s series about the point z = 7v/2 and determine the

region of convergence. (AU 2007)

Solution:
Let f(z) =cosz at m/2 f(m/2)=0

f'(z) = —sinz fl(n)2) = -1
1" (2) = —cosz f"(7)2) =0
f”’(z) — sinz f/”(ﬂ-/2) —1

.. The Taylors series for cos z at z = /2 is

cosz = f(m/2) + wtfl(ﬂﬂ) + %,}W(Wﬂ) + -

_—e=m/2) (z—m/2° (z—7m/2)°

1! 3! 5! o

The region of convergence is |z — 7/2| < .

Example 5.33

1—
Obtain the Taylor series of f(2) = —; “in power of (z — 1).
z
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Solution:

f(2) is not analytic at z = 0, hence we consider a circle with at z = 1 and radius
1, such that z = 0 is excluded from the region.

Then the region of validity for Taylor’s series will be |z — 1| < 1

1—-=2
1) =— L f) =0
-2 1
"2)=—+ = 1) =-1
1) =2+ e
6 2
" S (1) = 4
"2 =5 — 7"
24 6
" - _ - _ " 1 & —18
=-S5
Hence the required Taylor series expansion is,
z—1 z—1)2
fo) = s+ Sy Eo gy
1—
fz) = 222 = (=142 =12 =3(z=1)3+4(z— 1)1
Example 5.34
Expand ze?? in a Taylor’s series about z = —1 and determine the region of con-
vergence.
Solution:

f(Z) — 2027 — Z62(z+1)e—2

) 23 [(z 4 1)t 62(z+1):|

z{(erl) [HQ(ZJD +4(Z;1)2 +]

—[1+
- eig K(z+1)+ 2(231)2 + 22(2;: D’ +>

_(1+2(z+1) 22(z+1)2+m)}

TS

:e%[1+<1_%>(z+1)+<%_Z_2!>(Z+1)2
+<Z—T—§—T> (z—|—1)3+---]

2(21T1)+4(Z;1)2+”'H
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Example 5.35
22 -1

Find the Taylors series expansion of f(z) = CEDEE)
z z

in |z| < 2.

Solution:
Given
22 -1
fz) = (z+2)(z +3)
3

5.39

Example 5.36
1
Obtain Taylor’s series for f(z) = —————< i
z

Solution:
Given f(z)= ————

0 1 2—-z by splitting into
5 partial fractions

For |z| < 1

f(z) =

—_

—~
— —
+ +
IS IS [NGIENY

— /N
—
\

Sl 5= 5= 5|~

(]
—
|
~—
S
M|N
3
oy |
I\
—
—
~—
S
I
N
S

i
o
i
o
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Example 5.37
1
Expand f(z) = ————— in Laurent’s series valid in the region 1 < |z| < 2.
22 —-32+42
(AU 2009, 2010)
Solution:
1 1 1 1
Let f(z) = =

22—32—1—2:(2—2)(,2—1) -1 2-2
f(#) is an analytic function in the region 1 < |z| < 2

1 1

Hence f(z) =

The expansion of [1 - %} is valid when E’ <1 ie., |z] <2andthe

1\ L
expansion of <1 — —> is valid when
z

1
—’ <1l ie,|z|>1
z

Hence in the annular region 1 < |z| < 2, f(2) can be expanded in Laurent’s

series as
o=t 2 G (@) e - Lt (A)  (A)
A 2 T \3 2 2 27\ 2 2
== Z 2n+1 - Z Z7L+1
n=0 n=1
Example 5.38
E d f(2) 1 L t’ i in th i
Xpan z) = ————— as Laurent’s expansion in the region
p 22 —3242 P £
0 < |z — 1] < 1 and obtain its residue at z = 1. (AU 2009)
Solution:
1
1) 22 —3z+2
1 A B
= = +

(z=1(z-2) (2—-1) (2—-2)
=1=A4(z—-2)+B(z—1)
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Put z = 1 we get Put z = 2 we get
1=—A+40 1=0+B
1 1
f<z)__z—1+z—2
0<|z—1|<1
Let wu=2z-1 Soz=u+1 (e.) Jul <1
1 1
1 1
u (1—u)
-1
=— —(1—u)t
— —(1-u)
1 s 2+ )
=— — u—u 4.
u
—1
:Z_l—l—(z—l)—(z—1)2+ ......
—1
= +14+Gz=-1D)+(z-12+......
z—1
Residues
1
&)= o9

Here z = 1 is a pole of order 1
z = 2 1is a pole of order 1

Res [Z 3 +1] b zljl(z N 1) ’ f(Z) - z‘[jl(z B 1) ' m =
Res [ =2 = Li (=~ 2) [(:) = Li(z~2)- m ~1

Res [z=1]=-1

Example 5.39

Find the Laurent’s expansion for f(z) = for the region

o
22(1 = 2)
() 0<|z] <1 Gi) 1<|2| <4 (AU 2010)
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Solution:

(i) The region 0 < |z| < 1 is the interior of the circle |z|] = 1, with the

exception of the point z = 0.
1 1 _
f2)= 57— =500-2) !

22(1—2) =z

1

= s[l+z+22+23 4]
2
1 1 )

— ol
22z

is the required expansion in 0 < |z| < 1

1 1 1

o
1 ) ) .Y A )
— E =3 binomial expansion is valid if |z| > 1
z
n=0

and hence this is the required expansion in 1 < |z| < 4.

B Note : In fact it is valid in the region 1 < |z| < M, where M is any large
positive number.

Example 5.40
1
Find the expansion of f(z) = 5 intheregion 1 < [z — 1] <2 (AU 2009)
z—z
Solution:
1 1 1
L t == = =
et f(z) z—23  z2(1—-2%2) z2(142)(1-2)
112 12
oz oz4+1 11—z
Put z—-1=uw
z=u+1
1 —1/2 1/2
f(2) 22

:u+1 u—+ 2 U

1 1 1 1/1
w41 2\u+2 2 \u
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The region 1 < |z — 1| < 2is equivalentto 1 < |u| < 2

LN S S §
u(l+1) 4144 2u

(] - 1<1+u>—1 1
Cw U 4 2 2u

The first two terms can be expanded binomially since 1 < |u| < 2

f(z) =

543

=t b ]y )

1 1 1 1 1 N
-1 z2—1 (2=1)2 (2-1)3
_1 1_2—1+ z—1 2_ z—1 3+ K
4 2 2 2 2(z—1)
— (-1" — (—1)" n 1
N )t
fe) nz:% (z — 1)ntt nz:% gz 2= 1) 2(z 1)
Example 5.41
Expand ; as a Laurent’s series in the regions
P T (= +3) glons.
(i) |z| <1and
() 1<|z+1| <2 (AU 2007, 2009)
Solution:
1 A B 1/2 1/2
Given f(z) = = 12 v

(z+1)(z2+3) z4+1 2+3 2z+1 2z+3
(i) Given |z| < 1
1=A(z+3)+B(z+1)
1=24 = A=

1=-2B = B:—%

1 1 1 1

+1)(z+3) 2 1+z_3(1+§>
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{(1+z)1 - é (1+§)_1}
1
3

(1—z422-234+..)—
{

N = N N =

{1—z+22—z3+...—

12 8 26, 14 13,
f(z)—2{3 9+27z ...}—3
1

() Putz4+1=u

0 < |z+1] <2becomes 0 < |u| < 2
1 1 1

Now, <z+1>(z+3):(z+1)(z+1+2)ZU(U+2)

Instead of expanding in powers of z + 1 it is enough to

(z+1)(z+3)

expand in powers of w in 0 < |u| < 2.
u

(u+2)
R
0 < |u| < 2, wehave 0 < |u| and |u| < 2
Qe.) %<1 on |5]<1
J AN 1 (1+u)*1
u(u+2)_2u(1+ﬂ)_2u 2
2

:L[l_L(E)?_(E)nM]
2u 2 2 2

1 1 1 1 1,
wut2) 20 4TE T T
Replacing u by z + 1 we get

1 1 1 1 1
= — ot (21— =(z+ 1) +...

(z4+1)(z+3) 2(z+1) 4 8 16
Example 5.42
If f(z) = S find Laurent’s series expansions in
ICEECES P

() 0<|z—1]<4 (i) [z—1 >4 (AU 2009)
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Solution:
z+4 _ 1 N 5
(z+3)(z—1)2  16(z+3) 16(z—1) 4(z—1)2

Let f(z)=

Ho<l|z—1]<4

putz—1=u
1 1 5
1@ = s D To) " me
1 (1+u)—1 1 n 9
64 4 16u  4u?
1 1 5

641+ &)1 Tou  du?
_ 1 1 ’LL+(U)2 (u>3+ 1 + 5
64 4 4 4 16u  4u

f(z):gzll_zllJr(Z; >2_(Zf):m]_16(,21_1)*4(25_1)

This is the required Laurent’s series expansion for f(z)in 0 < |z — 1| < 4.

(i) [z — 1| >4 or <1
>
4
putz —1=wor —<1’
u
1 1 )
e TR B Ty
1 1 )

6u(1+1) 160 42

(Lt o M

~ 16u u 16u  4u?
_ LA (e 2+ 4 3+
- 16u U U U
1 A 4 3+
S 16(2 — 1) z—1 \¢—1 z—
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is the required Laurent’s series expansion for f(z) in |z — 1| > 4.

Example 5.43
Expand the function f(z) sl in Laurent’s series for |z| > 3

X uncti z) = —————— in Laurent’s series for |z .

P 22 +52+6

(AU 2013)

Solution:

. 22 -1 . B n C

2245246 242 z+3

22— 1=A(z+2)(2+3)+B(z+3) +C(z +2)

Put z= -2, B=3; Putz=—3, C = —8Equate Coeffof 22, A=1

3 8
=1 -
J) * Z2+2 z+3
When |z| > 3
FE) =14 o = 8
2(1+1)  z(1+3)
9\ ~1 -1
:1+§<1+—> §<1+§>
z z z z
3 2\" 8« 3\"
125 (2) =25 (= (2
e () Iy er (2
Example 5.44
-2
Find the Laurent’s series of f(z) = _f=-2 in
z2(z+1)(z+2)
1<|z+1<3. (AU 2010)

Solution:

Take u=z+1 = z=u-1
Tz —2 T(u—1)—2 Tu—9

22+ 1D)(z+2)  (u—1)-u(u—3)  ulu+1)(u—23)

Using Partial Function
Tu—9 A n B n C
wu+Dwu—-1) w u+l u—3
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Tu—9=A(u+1)(u—3)+ Bu(u—3) + Cu(u+1)
Putu=0 = -9=-34 = A=3

Putu=-1 = -16=4B = B=-4
Put u=3 = 12=12C = (C=1
Tu—9 3 4 1
=2 C 4~ ifl<u<3
ufu+1)(u—3) uw u+l u-—3 ! ful
_3 4 1‘1+1( u>*1
Cu w U -3 3
4 1 1\?
_§__[1__+<_> _ ]
U u U U

The second term of the series is valid for < 1 and the third term of the series

is valid for ’E‘ < 1 and finally put v = z + 1. Hence the series is valid for

1<|z+1] <u.

Example 5.45
. . . 4—3z
Find all possible Laurent’s expansions of f(z) = ———————— about z = 0.
2(1=2)2-=2
Indicate the region of convergence in each case. (AU 2009)
Solution:
4—3z
f2) = 2(1—2)(2—2)
4— 3z A B n C
21-2)2—-2) 2z 1—z 2-—z
A=2 B =1, c=1
) 4 -3z 2 n 1 4 1
i) —— = —+ ——
2l—2)2—-2) 2z 11—z 2-—z
2 -1 1 z -1 .
—;—F(l—Z) +§<1—§) Valld1n|Z|<1
2

:;+(1+z—|—z2—{—z3—|—...oo)

+%<1+§+(§)2+<§)3+...oo)
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4 -3z 2 1 IR 1 -1
i) —————=-—-[1—- —<1——) lidin 1 2
(ii) A-9e-2 = z( z) t3 validin 1 < |z| <
2 1i<1>n+1i(z)n
z zi=N\z 2n:0 2
4-3 2 1 "1 2\ 7!
(i) === (1-2) —=(1-2) validin|z| > 2
2(1=2)2-2) =z =z z z z
2 1%(1)” 1§:<2>"
z zf=\z z g \z
Example 5.46
1
Expand ——— as Laurent’s series
z(z—1)
(i) about z = 0 in powers of z
(i) about z = 1 in powers of z — 1.
Also state the region of validity. (AU 2009)

Solution:

(i) The only points where f(z) is not analytic are 0 and 1. Hence f(z) can be
expanded as a Laurent’s series in the annulus 0 < |z| < 1.

.\
z(z = 1)
1

= —;(1 —z)71

f(z) =

1
=——(Q+z+22+234+-1) (since |z| < 1)
z
=—[1/z4+14+24+22+2"+ ]
This is the Laurent’s series expansion of f(z)in 0 < |z] < 1.

(i) f(z)isanalyticin0 < |z—1| < 1 and hence can be expanded as a Laurent’s
series in powers of z — 1 in this region.

putz — 1 =u.
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1
= l-u+u?—ud+ut -]

u

1 2
=——=1+u—u"+---

u

1

= 14+ (z-1)—(z—1)2+---

(z—1)

This is the Laurent’s series expansion in 0 < |z — 1| < 1.

Example 5.47
. , . P . .
Find the Laurent’s series of f(z) = ————— valid in the region
22 +52+6
2 < |z| < 3. (AU 2009)
Solution: 1
224+52+6[22-1
1) 22 -1 52— 17 22 +52+46
)= —— = S —" e
22+ 52+6 22+52+6 =52 =17
=1+ ; ¢
B z2+2 z+3

Given 2 <|z| <3
= |z >2 and |z] <3

Example 5.48

Obtain the expansion for f(z) = z 5— in powers of (z — 1). Indicate the region
z

of validity.
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Solution:

The function f(z) = z _2
z

in the annular region 0 < [z — 1| < land 1 < |z — 1| < oc.

1
is not analytic at z = 0. Hence f(z) will be analytic

(i) Intheregion0 < [z —1| < 1
z—1 u

f(z): Z2 - (u+1)2
=u[l —2u+ 3u® —4u® + -]
=(z-D1-2z-1)+3(z—1)*—4(z —1)* 4+ -]

=u(l+ u)_2

is the Laurent’s series expansion in 0 < |z — 1| < 1.

(i) Inthe region 1 < |z — 1] < o0

:1[1_2_’_3 4_|_ ]
U v ou? o oud
2 3 4 1
Tu w NE AN
1 2 3 4

IR B ) PR R o} A

is the Laurent’s series valid in the region |u| > lor 1 < |z — 1| < oc.

Example 5.49

Find all the Laurent’s series expansion for f(z) = Z(liiﬂ and specify the
regions in which those expansions are valid. (AU 2008)
Solution:

The function f(z) is not analytic at z = 0 and z = 1. To expand by Laurent’s
series, we have to find an annular region bounded by two concentric circles which
does not include z = O and z = 1.

(i) Consider the region 0 < |z| < 1
In this region f(z) is analytic
1 1 _
f(E) = g = (1 2)?

2(1—-2)2 =z

1 2
“1+22+32"+--]
z

This is Laurent series expansion is valid when 0 < |z| < 1.
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(ii) Consider the region 1 < |z| < oo

f(2) is analytic in this region

1) = 2(1—2)? - 23 (L - 1)2

This is Laurent’s series expansion valid when |z| > 1.

(iii) Consider the region 0 < |z — 1] < 1

f(z) is analytic in this region.

1
&) = a1
=l G
:ﬁ[l—(z—l)—&—(z—l)z—i----]
1 1

:(2_1)2—2_14-1—(2—1)4--”

This is the required Laurent’s series valid when 0 < |z — 1] < 1.

(iv) Consider 1 < |z — 1] < o0

where f(z) is analytic

)

_ﬁ<l‘zil+<z—ll>2+”'>

5.51

This is the Laurent’s series expansion valid in the region 1 < |z — 1| < co.
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Example 5.50
1
Find the Laurent’s series expansion of the function f(z) = m in powers
z
of z and specify the region in which the expansion is valid. (AU 2008)

Solution:
The function f(z) is not analytic at z = 0 and z = +i. To expand by Laurent’s

series we have to find an annular region which does not include 0 and +:. We
have to find the expansions in powers of z.
(i) Consider 0 < |z| < 1, where f(z) is analytic
1
2(1+ 22)
(1+297

flz) =

Q=22 +24 —204..)

—Z+Z3_Z5"'

N[ Rk

This is valid when |2?| < 1 or |z| < 1.
(ii) Consider 1 < |z| < oo, where f(z) is analytic

1 1

(z) = 21+2%) B+ %)

This is valid when | —| <1 or |z|>1
z

Example 5.51
3z —

(22 — 22)z
2 < |z+2 <4 (AU 2011)

Find the Laurent’s series expansion at f(z) = in the annular region
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Solution:
3z —2
/() 2(22 — 22)
_ 3z—2
C 22(z—2)
putz+2=u
3(u—2)—2
I&) = ot —2-2)
_ 3u—8
~w-22w—1)
= C— (by partial fractions)
= artial fractions
u—2 (u—2)2 u—4 A
-1 1 1
J— + —

The first and second expansion are valid when

2
—‘ < lor2 < |u| and the third
u

expansion is valid when ’Z‘ < 4 or |u| < 4. Hence in the annular region specified

2 < |u] <4or2 < |z+ 2| <4, the Laurents expansion is

f) = —L s 2 (2 2+ o e (2 )y s (2 2+
T 242 42 (z+2)2 242 z2+2
1 24+ 2+
N
Exercise 5(b)
= Part - A

1. State Taylor’s theorem.

2. State Laurent’s theorem.
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3. What is the analytic part and principal part of the Laurent’s series of a func-
tion of z ?
4. Define convergence of a power series.

5. Find the Taylor series for the following functions.
(i) f(z)=cosz aboutz=m/3

() f(z)=¢" about z = —i
(i) f(z)=e* aboutz=1
(iv) f(z)=e*  aboutz = 2i
(v)  f(z) =cosz aboutz = —7/2.
6. Without expanding, find the region of convergence in each of the following
z+3
i =-————— aboutz=2.
i f(2) DG about z
(i) f(z) =secz about z = 1
—1
(i) f(z) = j — about z = 0
(v) f(z) =e* about 2 = 2i

—Z

(v) f(z)—log(i—i_z) atz = 0.

7. Find the Laurent’s series of each of the following functions.

i flz)= z(zi—l) validin0 < |z — 1| < 1.
(i) f(z) = @ validin |z + 1| < 1.
(i) f(z) = FA=2) valid in |z| > 1.

= Part-B

8. Obtain the Taylor’s series for the functions given below also state the region
of convergence in each case.

22341
i) fz) = z(zzi—:_l) about the point z = —i
VA
il z) = ———— — about the point z = 0
@ J&) = ey point 2
23 4+222 1
(iii) f(2)2m1n|z+§|<l
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9. Find the Laurent’s expansion for function f(z) given below in the specified

region.
. _ 4z +4 )
(1) f(z) = m in
(@ 0<|z| <2 (b)) 2<z] <3 © |z >3
. o zZ+3
(i) f(z) = FEErET))
(@ 0< 2] <1 (b) 0<z] <2 () 1<|zl<2
-
@ 1) = 25,1
(@ |z] >3 (b) |z| <2 () z< |z <3
. z .
(IV) f(Z) = m m
(@ [z4+2| <3 (b) 3<|z+2[<4 () [2+2]>4
1 .
V) f(z)= m in
@ 1< |z <3 b) 0<|z+]|<2
© |2 >3 @ |z <1
. 1 .
o) &)= ey ™
@ 2] <1 (b) 1<]z[ < V2 © |z[ > V2
.. _ 22 —6z—1 .
(vii) f(z)—(Z_l)(z_3)(z+2)1n3<|z+2|<5
2z
(viii)  f(z) = (ze_ b inle=11>1
. L 1 .
(IX) f(Z) = m m
@ |—1]<1 b) |z > 2
z .
(X) f(2)2m1n0<|2—1|<2
10. Expand f(z) = z(z;———i—zg—% in powers of z.

(a) within the unit circle about the origin.

(b) within the annular region between the concentric circle about the ori-
gin having radii 1 and 2 respectively.
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(c) the exterior to the circle with centre as origin and radius 2.

11. Obtain the Laurent’s series expansion for about z = ( and spec-

1
2(1—2)?
ify the regions in which the expansion are valid.

z+1

12. Represent f(z) = .
Z —

by

(a) Its Laurent’s series in powers of z for the region |z| > 1
(b) Its Taylor’s series in powers of z and give the region of validity.

(c) Its Maclaurin’s series and give the region for its validity.

5.5 Singularities

Definitions
Zeros of an analytic function: A zero of an analytic function f(z) is a value of
z for which f(z) = 0.

Let f(z) be a function which is analytic in a region R and ‘a’ is any point in
R then f(z) is said to have a zero of order m at z=a if f(z) = (z — a)"¢(z),
where ¢(z) is analytic at a and ¢(a) # 0.

B Note: If f(z) has a zero of order 1 at z = a then f(z) is said to have a simple
zero at z = a.
For example

1. Let f(z) =sinz

By Taylor’s series expansion about z = 0, we have

. - Z3 25
San—Z—g—Fy—f—
22 Z4
:z<1—§—l—a+--->
= z¢(2)

¢(z) is analytic and ¢(0) = 1 # 0.

z = 0 is a zero of order 1 for f(z) or sin z has a simple zero at z = 0.

2. Consider f(z) = zsinz
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By Taylor’s expansion about z = 0, we have

PO N FE T

¢(z) is analytic and ¢(0) # 0.

flz) = (22 =1)(2* =32+ 2)

=C+D)E-1D(==-2)(z-1)
=(z4+1)(z—2)(z—1)2
. z = —1,2 are zero’s of order 1 and z = 1 is a zero of order 2.

Singularities of an Analytic Function

A point ‘a’ is called a singular point of an analytic function f(z), if f(z) is not
analytic at ‘a’ or f(z) is said to have a singularity at ‘a’.

Types of singularities
1. Isolated singularity:

A singular point z = a of f(z) is said to be an isolated singular point of f(z)
if there exists a circle |z — a] = §,0 > 0 encloses no other singular point other
than ‘a’. In other words, the point z = a is called an isolated singularity of
f(z), if there is no other singularity of f(z), if there is no other singularity in its
neighbourhood.

B Note: If ‘a’ is not singular point and we can find 6 > 0 such that |z —a| = ¢
encloses no singular point, then we call ‘a’ an ordinary point of f(z).
For example:

1
flz) = m has two isolated singularities z = 1,
z+3 . . .
z = 2 and f(z) = 2219 than three isolated singularities z = 0,
z = :i:\/27.
2. Pole

If a is an isolated singularity of f(z). The point ‘a’ is called a pole if the principal
part of f(z) at z = a validin 0 < |z — a| < ¢ has a finite number of terms.
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If the principal part of f(z) at z = a is given by

> _ b1 bo bm
bo(z —a)™ = e
nzzzl (z=a) z—a+(z—a)2+ +(z—a)m+

where b,,, # 0 then we say that ‘a’ is a pole of order m.

B Note: A pole of order 1 is called a simple pole and a pole of order 2 is called a
double pole.
For example

2 _ 9 3 z
f(z) = % and f(z) = © have simple poles at z = 2 and z = 0
z— z
3
respectively and f(z) = ﬁ has a pole at z = 1 of order 2.
5

3. Removable singularity
A singularity z = a is called removable singularity of f(z) if ™/ f(2) exists.
For example

o) = T
e A
S G ;!a)2 (= ;'a)4 -
LLCETI N

z—a (z—a)
‘. # = a is aremovable singularity.

4. Essential singularity
If the principal part of f(z) in its Laurent’s series of f(z) at z = a, valid in
0 < |z —a| < r, has infinite number of terms, then z = a is called essential
singularity.
For example
1 1 1 1 1

S VR e H
1. f(z)=e —1—}—2-1-2! z2+3! Z3+...oo
hence z = 0 is an essential singularity.
2 f(z) =sin
. f(z) =sin
z—a
1 1 1 1 1

:z—a_g(z—a)3+5(z—a)5moo

hence z = a is a essential singularity.
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Entire function

A function f(z) which is analytic everywhere in the finite plane (except at infinity)
is called an entire function or an integral function.
For example e*, sin z, cos z are entire functions.

Meromorphic function

A function f(z) which is analytic everywhere in the finite plane except at finite
number of poles is called a meromorphic function.

For example f(z) = is a meromorphic function, as it has only two

z
2(z—1)2
poles a single pole at z = 0 and a double pole at z = 1.

5.6 Residues

If z = a is an isolated singularity of f(z), we can find the Laurent series of f(z)
about z = a.

oo oo
b
ie. f(z) = Z an(z —a)" + Z ﬁ, then the coefficient of ie.
n=0 n=1

zZ—a
by in the Laurent’s series of f(z) at z = a valid in 0 < |z — a|] < r is called of
the residue of f(z) at z = a.

Hence the residue of f(z) at z = a is also given by

2w

Res F(2)]sn = e / f(2)dz
C

where C'is any closed curve around ‘a’ such that f(z) is analytic within and on
C, exceptat z = a.

1. If z = a is a simple pole of f(z), then

lim [(z — a) f(2)] = b1 = [Res  f(2)],_,

z—a
Hence if z = a is a simple pole of f(z), then

Residue of f(z) at z = a = lim(z — a) f(2)

z—a
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P
2. If z = ais a simple pole of f(z) and if f(2) = P) then

Q(z)
Q(z) = (2 — a) R(z) where R(a) # 0 then (2 — a)
PG PE)
©lim (2 —a)f(z) = lim _—(Z —4)P(z)
Jim (2~ a)f(2) = limy | £
— fim [(z —a)P'(2) + P(z)}
z—a | Q'(z)
= lim _P(z)
-1 55

P
Hence for a simple pole z = a Residue of f(z) at z = a = lim (2)

Q)

3. If z = a is a pole order m, then

(z—a)"f(z) = Z an(z —a)" + Z bp(z—a)™"
n=0 n=1

S(z—a)"f(z) = Z an(z —a)™™ + by (2 —a)™!

n=0
+bo(z—a)" 24 by,
Differentiating (m — 1) times and taking the limit as z — a, we get,

m—1

Residue of f(2) at z = a = lim ——[(z — a)" f(2)]

z—a dzM—

5.7 Cauchy’s Residue Theorem

Statement: If C is a closed curve, and f(z) is analytic within and on C, except
at a finite number of singular points within C, then

/f(z)dz =2mi[R1 + Ro + - - + Ry
C

where Ry, Rs - - - Ry, are the residues of f(z) at the singular points z1, 22 - + - zy,.
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Proof:
f(2) is an analytic function within and on C' except for a finite number of singu-
larities, z, 21 - - - z,. We enclose the singularities by small non - intersecting cir-
cles C,Cy, - - - C), with centre at z1, 23, - - - 2, and radii r1, 79 - - - 7, lying wholy
within C.

Then f(z) is analytic in the multiply connected region enclosed by the curves
C1,C5 - - - Cp. Hence by Cauchy’s extension of integral theorem we have

/f(z)dz:/f(z)dz+/f(z)dz+---/f(z)dz )
C Cq Co Cp

=2mi[R1 + Ra+ ---+ Ry] (by definition of Residue)

Example 5.52
Give the formula of obtain the residue of f(z) that has a pole of order m at z = a.
(AU 2009)
Solution:
Residue at a pole of order m is given by
1 dm—l
— m
Res f(2)],ma = 1t poy g (2 = )" 7 2)]
Example 5.53
. . : . . z—sinz
Find the nature and location of the singularity for function f(z) = —
z
(AU 2011)
Solution:
z—sinz
f(z) = T2
Hence z = 0 is the only singularity of f(z)
22 2
Z_Sinz_z_(z_g_i_g ...... )
3 5

z z

. z —sinz
lim — | = 0
z—0 z

z = 0 is a removable singularity
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Example 5.54

Find the singularities of the following function and classify them in each case.

OF6) =y @ = (1) G g =

1

sinz — z e z#0

w1 =2 e ={ G
(Vi)f(z):ZZ_QQSin< ! )

z—1
Solution:

(i) Given f(z) =

z
e? —1

The singularies of f(z) are given by the values of z for which e* — 1 = 0
et =1=e" (n=0,£1,%2,--)
*. z = 2nmi are the singularities of f(z) now

22
e —1= [1+z+§+---] -1

- lim [

1 ] = +1, hence z = 0 is a removable singularity for f(z) also
Z—>

ez —1

lim [ } = oo if n # 0, hence z = 2ni are simple poles of f(z).
z—2nmi | % — 1

(ii) Given f(z) = sin (%)

Here z = 0 is the only singularity of f(z)

. 1 1 1 n 1
now sin|{ - )| ==—— 4 — -
z z 3123 5l5

1
lim sin (—) does not exist and the principal part of f(z) contain an infinite
z

z—0
number of terms.
Hence z = 0 is an essential singularity.

(iii) Given f(z) = (Zojiz;
cotmz
or  f(z)=

(z —a)3sinmz.
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3

The singularities of f(z) are given by the value of z for which (z —a)® sinmz = 0.

Hence z = aand sinmz = 0 = 2z = 0,+1,£2,--- are the singlularities of
f(2).

Hence z = a is a pole of order 3 of f(z) and z = 0,+1,+£2,--- are simple
poles (each)

(iv) Given f(z) = ==
y4

Here z = 0 is the only singularity of f(z).

_ 23 55 B 23 45
sinz =z 54-5— 54_5
) B 23 2P
sinz — z
i _
tmy (5 £0

Hence z = 0 is a removable singularity of f(z).

(v) Given f(z) = { 60 iig

given f(z) =0forz =0
z = 0 is the only singularity

lim f(z) =1

z—0

Hence z = 0 is a removable singularity.

(vi) Given f(z) = 22_22 sin <Z i 1)

1
The singularitiesare z =0and z =14+ —,(n =0,£1,4+2,--+)
nw

1
Hence z = Oisapole oforder2and z =1+ —(n = 0,£1,4+2,--- ) is a
nm
essential singularity.

As the limit does not exists and the principal part contains in limits number of
terms.

Example 5.55

1— 2z
Find the residue of —— at = = 0. (AU 2013)
¥4
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Solution:
22 22)2 22)3
[— (+E+ GE+ &4 )}
f(Z) = A
_ 2 2 8
=-3" 2 g T
1 4
[Resf(z)],=0 = Coeff of — = 54
z 3
Example 5.56
1
E d = ——— in L t i lid for th i
xpand f(z) ) in Laurent’s series valid for the region
2| >3 &| < |2| < 3. (AU 2012)
Solution:
1 A B

(z+1)(2+3) z+1+z+3
A=1/2, B=-1/2
. 12 12
RS Rl g
Casel: |z| > 3
12 e
1@ = a7 " 20+ 379
1

:§;1+1py4—551+3my4

1 1\" 1
_ G AUCHN e o 1) n
= (3) - e
1
Thisisvalid’—‘<\ & 13/ <1
z

ie, |z|>1 e, |z|/>3
ie, [z[>3
Case2: 1< |z|] <3

ie,|z| >1and|z] <3

/2 1/2
fe=q" 705
12 1/2
T z(1+1/2)  3(1+2/3)
= 2—1Z(1 +1/2)7! — é(1 +2/3)7!
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_ 21_2 (-1)" <%>n - é Yo (=nre/3)"

1
This is valid '—’ <1l & |2/3|<1
z

ie., |z] >1 |z| <3
1< |z <3
Example 5.57
Find the residues of the function f(z) = P TP at a simple pole. (AU 2012)
z3(z —
Solution: z = 2 is a simple pole
Res f(2)].—2 = lim(= — 2)f(2)
. 4
= I =2 5y
O T R
2828 8
Example 5.58
2
Determine the residue of f(z) = m atz = 1. (AU 2011)
Solution: z = 1is a pole of order 2
d 22
R = lim — 12
. (24 2)22 — 22(1)
= lim
z—1 (Z + 2)2
6—-1
=2 = 5/9
5 /
Example 5.59
2
Find the residues of f(z) = (z—l)zw at its singular points. (AU 2011)

Solution: Put (2 — 1)(= + 2)2 —0

. z=1 isapole of order 1

z = —2is a pole of order 2
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. 22 1
(Res f(z>)Z:1 = ;1_% (Z - 1)m = 5

(Res f(2)):-—2 = lim i{“”)?z—z}

z——2 dz (Z — 1)(2 + 2)2
. (z—1)22 - 22(1) _ (=3)(—4) -4
=i, { CEE }_ 9
= 8/9
Example 5.60
Find the residue of cot z at the pole z = 0. (AU 2010)
Solution:
Res (£(2))]._, = lim (= — a) f(2)
Here f(z) =cot z
_cosz  P(z)
Cosinz ap(2)
& z=a=
@¢(z) = cos z
#(0) =cos0=1%#0
Y(z) =sinz
¥(0) =sin0 =
[Res (cot z)],_, = lim(z — 0) f(z)
o(2) Ccos z cosz
V(z) d,. cosz
- (sin z2)
[Res (cot z)],_, =1
Example 5.61
If f(z) = z_——ll —2[1+(z—1)+ (2 —1)*+...], find the residue of f(z) at
z =1 (AU 2010)
Solution:

[Res f(2)].-; = —1




Complex Integration 5.67
Example 5.62

Calculate the residues of f(z) at its poles where

i — 22 . R
() f(2) = G112 (AU 2009) (i) f(z) = Aot
e* . 22 +4
(111) f(Z) = m (AU 2006) (IV) f(Z) = m
1 . ze?
Solution:
2,2
(i) Given f(z) =

(z —1)*(z +2)
Here z = 1 is a pole of order 2

and z = —2 is a pole of order 1

" Res[f(2) ey = lim (2 +2)(2)

z——2
= lim (2 + 2)Z—2
o z——2 (Z — 1)2(2 + 2)

- llgi dii Li2}
(2 +2)(22) - (:*)(1)
= [ (= +2)2 ]

z

li
5
9

22

A4t

The poles of f(z) are given by

(ii) Given f(2)

A 4+at=0
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or  z=a(-1)*

2 1 2 1
= @ COS W.’_ZSIDW

= a7/ where n = 0, 1, 2, 3.

2= acilh qem g/, e/ gre all simples poles.
P
As f(z) is of the form (2)
Q(2)
P(z)
R i = 1
[ €s f(z)]z:ae /4 Z_);IE?WM I:Q’(z):|
1
— i —
2—>zlzleTi17"/4 |:4Z:|
I gy
= 4a€
_ (=9
ff 4v/2a
Resf(2)](_ omiy = lim || = —eidm/4
(2=aei3/4) 2saeidT/4 | 4z 4a
_—(1+9
4/ 2a
y 1
[Resf(z)](z:aei5”/4) ) zalllelgﬁ/zl |:E:|

1 —i5m /4 1 .
=—e = —(—1+4¢
da 4 2a( )

. 1
[Resf(z)](z:ae"“/‘l) - z_)}llerir;wm |:4_2:|

— i —i7m /4
N 4ae
1
= 1+71).
4\/§a( i)
N e*
(lll) Given f(Z) = m

Here z = 0 is a double pole of f(z)
z)

and z = 3i are simple poles of f(

1 d
[Res f(2)],=0 = 1 ilf(l) %(z —0)%f(z)
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(22 +9)2
1
9
[Res (2)].=si = lim (= — 30) /(=)
eZ
= 1. _—_—
251 (22)(z + 39)
30
T b4
Z'e3i
54
Z'e—?)i
Similarly  [Res f(2)],=—3i =
54
2
. ) z2+4
(IV) GlVen f(Z) = m
2244 2244

C2(22422+2)  z(z+1-d)(z+1+9)

Here z = 0 and z = —1 =+ i are simple poles of f(z) and f(z) is of the for
P(z)
Q(z) . P()
oo [Resf(2)].=0 = ;E}% Q'(z)
. 22 +4
=lim ——
2—0 322 + 4z +2
4

:—:2
2

Res ()1 = _lim [

P(Z)]
Q'(2)

. 224+ 4
= lim |————

z——1+i |:322 +4z + 2:|

143
2
—(1+ 349)

2

Similarly [Resf(z)],=—1-i =

1

(V) Given f(Z) = m
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Here z = +ai are poles of order 2 for f(z)

1 d

[Resf (2)]smai = = lim = [(z — ai)? - ()]

1! z=ai dz
g a1

1! 2=ai dz (2 4 ai)?
= lim =2

z—ai (Z + (Ii)3

—1

4a3
Similarly [Res f(2)]s=—ai = %‘;
(vi) Given f(z) = ﬁ

Here z = 1 is a pole of order 3 for f(z).

Example 5.63

50
Find the residue of f(z) = m atz = 1.
Solution:
50z
1& = e —1e
z = 11is a pole of order 2.
The residue of f(z) at z = 11s

(z+4)50 — 50z(1)
z—rg (2 —|—4)2

(AU 2009)
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~ 5(50) — 50(1)
N 25
200

~ o5

Example 5.64

Evaluate the following, using Cauchy’s residue theorem

4 —
) / 32 )dz where C'is |z| = 3/2 (AU 2009)
@ )/ dz where C'is |z| = 2
(iif) / _92 here Cris |2] = 1 (AU 2009)
2SI 2z
@iv) / , where C'is |z| = 4 (AU 2010)
v) /tan zdz, where C'is |z] = 2 (AU 2011)
Solution:
4— 3z

() Let f(2) = —1)(=2)

Here the poles of f(z) are z = 0, 1, 2 which are simple poles.

Given C' : |z| = 3/2 which represents a circle with centre at 0 and radius 3/2.
Hence out of the three poles only z = 0 z = 1 lies within C'.

Let Ry = [Res f(2).=0] = lii%(z —0)f(2)
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By Cauchy’s residue theorem

/ F(2)dz = 2mi[ Ry + Ro)
C
= 2mi(2 — 1)

= 2m

4 -3z .
e T
c

. z—2
(11)/@(120 : ’Z‘ =2
c

Let f(z) = ;%_21)

Here, the poles of f(z) are z = 0 and z = 1 which are simple poles
Hence z = 0 and z = 1 line within |z| = 2

Let Ry = [Resf(2)}om0 = lim(z = 0) - f(2)

(-2
- 2—0 z—1
=2
and Ry = [Resf(2)]:=1 = llgi(z - 1)f(z)
= lim 22
2=l 2
——1

By Cauchy’s residue theorem
/ F(2)dz = 2mi[Ry + Ro)
C
=27mi(2—-1)

= 271
-2
/zidz = 271
z(z—1)
C

d
(iii)Given/ c Ol =1
2SI z
C

Let f(z) =

1

zsin z
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The poles of f(z) are gives by zsinz = 0

3 5
1.€. z[z—z—%—z—"}zo

3! 5!
2 4
9 z z B
or z [1—54-5--}—0

d 2 0
= lim — [ } (—form) (using L"Hospital’s rule)

2—0dz |sinz 0

. sinz — z2cos z
= lim — ¢
sin® z

= lim { } =
2—0 L2 cos z

By Cauchy’s residue theorem
/f(z)dz = 2mi[Res f(2)].=0 =10
C

z

s e
(iv) leen/mC: | z| = 4
C

e
)= i
c
Here the pole of f(z) are z = +i

Which are poles of order 2 and lie within C'

Let Ry = [Resf(=)]omi = ~ lim - [(z — mi)f(2)]

1! z57i dz

o z—7i dz (Z + 7Ti)2
(z + mi)%e? — 2(z + mi)e?
(2 + mi)*
e (2mi — 2) 1 )
= gt ozt

1
Similarly Ra = [Resf(2)],=—mi = m(w —1)

= lim

Z—Th
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By Cauchy’s residue theorem
/f(z)dz =27i(R1 + R2)
c

5 Ar+i+m—d 2w
=M = — -
473 473

(v) Given /tanzdz c:lz| =2
C

sin z

Let f(z) =tanz =
cos z

The poles of f(z) are given by cos z = 0.

ie.z=(2n+ 1): where n = 0, +1, +2, - -+ which are simple poles.

Out of these poles only z = —1—% and z = —g lie within C' and f(z) is of the

P(z)
form .
Q(2) bie)
z
let Ry = —nso =1
S Rl [R‘esf(z)}z—ﬂ'/Q ZL)I% Q/(Z)
. sin z
= lim ;
z—2 —sinz
=-1
Similarly Ry = [Res f(2)],=—z = -1
By Cauchy’s residue theorem
/f(z)dz = 2mi[R; + R2]
C
= 2mi[—1 — 1]
= —4mi
/ tan z dz = —4mt
C
Example 5.65

2 2
sinmz® + cosmz .
Evaluate / dz, where C'is |z| = 3.

(z—1)(z—2)

(AU 2013)
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Solution:

1 1 1
(z—1)(z—2) 2z-2 2z-1

: 2 2
1 1
[t (ﬁ_ 21) (cos w22 + sinm22)da
C C

/ (cosmz? + sin 72?) 4 / cos 22 + sin w22 g
= Z J—

z—2
C C

z
z—1

z = 2 lies inside |z| = 3; z = 1 lies inside |z| = 3.

I =2mif(2) —2mif(1) where f(z) = cos mz? + sin72?

sint =0

= 2mifcos4m + isindrn| — 2mi[cos T + sin 7] cos = (—1)"
= 2mi[l 4+ 0] — 27mi[—1 + 0]

= 2mi + 27w = 4mi

Example 5.66
Evaluate the following using Cauchy’s residue theorem

(i) /(LwhereCis\z—i\ =2

22 +4)2
12z — . .
(ii) / 5dz, where C'is |z +1i| = V3 (AU 2006)
2z 4 z)(z — 1)
(iii) / ®_dz, where Cis |z — | = =
CoS 2 2
C
(iv) /(z;l)d here C'is |z — i = 2 (AU 2008, 2012)
v G122 Z, W z—1 = R
C
1
) /ZQ(j;L—ledz, where C'is |2 + 1 + 4| = 2 (AU 2010)
C

t
(Vl) /W&,Wherecist_:u =1
C



5.76  Engineering Mathematics - 11

Solution:
(1) Given/LC: |z —i| =2
(22 4 4)2
c
Let f() = —o !

(22+4)2 (2 +20)%(z — 20)2
The poles of f(z) are z = +2¢ and z = —2i, which are both poles of order 2.

Out of these two poles only z = 2 lies within C'
1 d

Let Ry = [Resf(z)],=2i = T Zh_I)TQlZ e [(2 — 2i)* - f(z)]
d 1

291 dz (2 + 2i)2

) -2 1
Iim |———m— | = —
2—2i [(z + 22)3} 32i

By Cauchy’s residue theorem

/ F(2)dz = 2mi(Ry) = 2mi (é)
C

_ T
16

. . 122 -7 .
(i) leen/ 57130 = 1)2dz C:lz+il =3
C

12z —7
(22 +3)(z — 1)2
The poles of f(z) are z =1and z = —3/2

Let f(2) =

where z = 1 is a pole of order 2
and z — 3/2 is pole of order 1

Out of these two poles only z = 1 lies within C.

[Res(z)]ot = 77 lim = [(z = 17 /()]
d (122 -7
zl—% dz [ 2z +3 :|
(22 +3)(12) — (122 — 7)(2)}
(22 4 3)2

50
zl—>rnl |:(22+3)2:|

z—1

:lim[
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By Cauchy’s residue theorem

/f(z)dz = 2mi(2) = 4mi
C

122 — 7
dz = 41
/<2z+3><z—1>2 S

(iif) Given/ ° dzwhenC: |z — /2| = /2
COS Z2
C

Let /(=) = COS 2

The poles of f(z) are given by cos z = 0
ie.z=2n+ 1)/2,n =0,4+1,42, - -- which are simple poles

z

P(z)
Q(2)

retoler = i, () = 2, () =

By Cauchy’s residue theorem

/f(z)dz = o (%) = 7%
C

1
@iv) /Ldz,c;|z+1+i|:2

Out of these poles only z = 7/2 line within C and f(z) is of the form

2242244
C
z+1
Let = -
et f(2) 22422414

the poles of f(z) are given by 22 + 22 +4 =0
or (z+1)2+3=0

o,z = —141+/3 are the simple poles of f(z). Out of these two poles only
2 = —1 — i+/3 lies inside C.

' . : ozl
o [Resf(2)].- 13 = H}(ﬂl@)(z F1+IV3)I() <z +1- u/ﬁ)

1
= lim = —
z——(14+/30)
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By Cauchy’s residue theorem

/f(z)dz =2mi(1/2) = mi
C

ez
(V) /md270|2—1|:1
C

z

e
Let f(z) = ———
IC) = et

the poles of f(z) are z = —2and z = 1. z = —2 and z = 1 are simple

poles of f(z). Out of these two poles only z = 1 lies inside C.

[Res (2)]=1 = lim(= — 1) - £(2)

= lim ¢ —é
) o] z+2 L\ ]

By Cauchy’s residence theorem

/f(Z)dz — i (g) _ 12?7:@
C

zZsec z
(1-2%)

C
Cauchy’s residue theorem.

(vi) Evaluate / dz, where C is the ellipse 422 + ay? = 9, using

Solution:
zZsecz z

Letf(z) = = 4

1—22  (1—22)cosz

The poles of f(z) are z = +1,2 = (2n +

1)m/2. /—
z = 41 and 2 = (2n + 1)7/2, N

n=0,+1,+2--- are simple poles.

»
jé<
y

B2

\

The ellipse 422 + ay? = 9, meets the real
axis at = £3/2 and the imaginary axis at y = £1.

Hence out of these poles only z = %1 lie within C.

Let R; = [Res f(2)].=1
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= lim(z — 1) f(2)

z—1
= lim .
z—1 (cos z)(1 + 2)
-1 —secl
~ 2cosl 2
Similarly, Ry = [Resf(2)]se_t = — — —>¢!
2cosl 2

By Cauchy’s residue theorem.

/f(z)dz = 27i[Ry + R2]
C

—secl 1
= 2mi [ s2ec — sezc } = —2misecl.
Example 5.67
-3

Evaluate / Z2 dz where C'is a circle 22 + y? = 9. Using Cauchy’s residue

22—z

C

theorem.
Solution:

z—2 z—2
Let = =

et/ (z) 22—z z2(z-1)

Given C is a circle 22 + y? = 9 or |z| = 3 the poles of f(z) are z = 0 and
z = 1, which are both simple poles. Both these poles lie with in C'.

Let R; = [Resf(z)].—0 = 212%(2 —0)f(2)

i |22 =2
z—0 |z —1]
and Ry = [Resf(2)].=1 = lirri(z 1) f(»)
zZ—
= lim 22 =-1
z—=1 | 2 ]

By Cauchy’s residue theorem
/ f(2)dz = 2milRy + Ry
C

=2mi(2 — 1) = 2mi
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Example 5.68
2
-1
Use Residue theorem, to evaluate f ?;ZL dz where C is the circle
o (#-1(=-3)
|z| = 4. (AU 2010)
Solution:
322 4+2—-1 322 4+2—-1
H = =
e A 5Ty Sl P § Y P T poy
Here z=—1,1, 3 isapole of order 1
z=1, 3, —1 lies inside the circle |z| = 2
Now  Res[f(z)l..; = Lt (== 1) f(2)
322 +2-1
= It -1)-
N SR popy T Py T po
_ 3 _3
2(-2) 4
Res[f(2)l.ey = It (+1) f(2)
3224+ 21
= Lt 1)-
z——1 (Z * ) (2 — 1)(2’ + 1)(2 — 3)
_3—-1-1 1
(-4)(=2) 38
Res[f()],g = It (2—3) £(2)
322+ 21
= Lt —-3)-
z—3 (z=3) (z—=1D(z+1)(z—3)
B 39)+3-1 B @
(2)(4) 8

.". By Cauchy’s Residue Theorem,

3224+ 2—1
/ (ZL dz = 2mi [sum of the residues]

22— 1)(z — 3)
= 2mi [_—3 1+@]

4 8 8
.[—6+1+29]
:271'2?

= 671
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Example 5.69

1
Evaluate / ————dz where C is the circle
23(z+4)

C
() 2| = 2 (ii) |z + 2| = 3. (AU 2010)

Solution:
1
Let f(Z) = m

The poles of f(z) are z = 0 and z = —4. z = 0 is a pole of order 3 and
z = —4 is a pole of order 1.

(i) Consider C': |z| =2

Out of these two poles only z = 0 lies within C.
[Resf(2)]z=0 = 5; lim —— [(2 = 0)°f(2)]

L @[ 1

=—lim — | —
22-0dz2 |z4+4
1 . 2 1

=—lm|—— | = —
2 2—0 (z + 4)3 64

By Cauchy’s residue theorem

1 i
/f(z)dz = 27 (6_4> =3
C

(ii)) ConsiderC': |z +2| =3
Both the poles z = 0 and z = —4 lie within ¢

Ry = [Resf(2)]:=0 = 61_4

and Ry = [Resf(2)],=—4 = Zlir& (z4+4)- f(2)

. 1
- zli>nfl4 [;:|
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By Cauchy’s residue theorem

/ F(2)dz = 2mi [Ry + Ro)
C

Example 5.70
24+ 3sinmz

Wdz, where C'is a square

Using Cauchy’s residue theorem, evaluate /

C
bounded by the line z = £3 and y = +3:.
Solution:

2+ 3sinmz

Let f(z) = T

The poles of f(z) are z =0and z = 1.
z = 0 is a simple pole.
and z = 11is a pole of order 2.

Both these poles lie within C'.
Let Ry = [Resf(z)].—0 = lin%(z —0), f(z)
A [2 + 3sin7rz} 5

z—0 (Z — 1)2
and Ry — [Resf(2)loet = %IE dilz (=17 ()]
. d |2+ 3sin7z
=g [72 ]
. [(z2)(3mcosmz) — (2+ 3sinmz)(1)
- ;LH% [ 22 ]
= [(1)(=3m) — 2]
= —37 — 2.

By Cauchy’s residue theorem
/f(z)dz = 27i [R1 + Ro)
C

= 27i[2 — 3w — 2] = —67%
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Exercise 5(c)
= Part- A

—

. Define simple pole and multiple pole of a function of f(z). Give one example
of each.

2. Define removable singularity with an example.

3. Define essential singularity with an example.

4. Define isolated singularity with an example.

5. Define meromorphic function with an example.

6. Define entire function with an example.

7. State Cauchy’s Integral formula.

8. State Cauchy’s residue theorem.

9. State the formulas for finding the residue of a function at a simple pole.
10. State the formula for finding the residue of a function at a pole of order m.
11. Find the singularities of the following functions and classify the singularities.

e?? z
1 o
© JG)=(=3)sin—s @ f()=T
© f(z)=sin (1 O ()=
z) = sin )=
1—=2 z(e* — 1)
1 2
= — 1 h = 71/’2
@ [)=G-idsin—s O f()=c
12. What kind of singularities do the following function have
(a) f(Z):l_ez at z=2m (b) f(Z):m atZ:’ﬂ'/4
() f(z)=tanl/zatz=0 (d) f(z) = zcosecz at z = 00
(e) f(z):watz:a §i) f(z):el/zatz:O
z—a

13. Find the residue of f(z) at z = 0, for the following function.

@ f(z)==
© f(z)= 1;362
© flo)=21

® f(z) = %

1
d  f(z)= -2+
0 flo)= L2t

2(22+1)
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14. Calculate the residue of f(z) for each of the following at its isolated singu-

larities.
2 zsin 2 ze® cos 2
b — d) —
(a) 3102 ()( — )P (C)(Z_1)2 (d) 3
Cos 2 23 z
(e . ® ta? (8) 21245
15. Evaluate the following using Cauchy’s residue theorem.
(a) is|z| =1
322 1
(b)/ FrEt dzwhere01s|z|—2
(z—1)(
(c)/ dz where C'is |z| = 3
- z| =
23(z 4+ 4)
C
d
(d) / %% Where C'is |2] = 1.
sin z
()/ dzwhereC'ls |z| =2
= Part - B
. , . 4 — 3z
16. Find the Laurent’s series of f(z) = ———————— about z = 0 and hence
2(1=2)(2-2)
obtain the residue of f(z) at z = 0.
22 +1
17. Evaluate / dz if C'is (1) |z — 1| = 1 (i) |z + 1| = 1. Using Cauchy’s
22
C
residue theorem.
18 Ealate/ 122 = 7 dz where C' is 2% + y? = 4 using Cauchy’s
. Evalu Z W x =4u u
(z —1)2(22+ 3) Y g Y
residue theorem.
19. Using Cauchy’s residue theorem, evaluate the following:

( )/Slnﬂ'z + fcosmz?

D=2 dz where C'is |z| = 3.
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3cos z .
(b) / 5 — 3, where C'is |z]| = 1.

(©)

s |2| = 5
(d) /zel/zdz where C'is |z| =5
622 .
(e) / mdz where C'is |z| = 3
d
(D/Wil) where C'is |z| = =
(g / dz where C'is |z| = 2

(h) / sin 2 dz where C'is |z| = 2

()/ dzwhereCls |z| =4

20. Evaluate the following using Cauchy’s residue theorem.

()/>2j;15MWMECBV—ﬂ:3ﬂ

— e i 9| =
(b)/23(2+4) where C'is |z + 2| =3

(c)/ dzwhereCls\z—ﬂ =3

2
z . B
(d)/, CESEESE dzwhereCls\z|f\/§.

3 2
(e)/ i + )dzwhere01s|z—2|—2
z_

2
(ﬂ/ Z+2wwmmcmp—u:1
2z —1
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